
Aardvark
Release 0.8.7

Dec 19, 2021





Contents

1 Getting Started: 1

2 A Note About Built In Functions: 3

3 Running Files: 5

4 Math And String Concatenation: 7

5 Booleans 9

6 If Statements: 11

7 Recieving User Input: 13

8 While Loops: 15

9 Functions: 17

10 Directives: 19

11 File Handling: 21

12 APE: 23

13 Visual Module: 25

14 Server Module 27

15 Exec And Running Other Langs: 29

16 Current Memory: 31

17 Data Types: 33

18 Tools Module: 35

19 Database Module: 37

20 List: 39

i



21 File System Module: 41

22 NLP Module: 43

23 Timer module 45

24 Regex Module: 47

25 System Module: 49

26 Closing: 51

ii



CHAPTER 1

Getting Started:

To get started with your first output do: output('hello world!\n'). There you go, you’ve officially ran
your first program! Take note of the \n. If you (like me) get tired quickly of writing \n you can go ahead and use
#include anr press enter, and then run output('hello world!'). See! works without the \n. We’ll talk
more about #include later, but for now thats all you need to know. Comments start with // and end with \\, but
versions below 0.8.7 use / and \. Clearing the terminal is done by using clear().

1



Aardvark, Release 0.8.7

2 Chapter 1. Getting Started:



CHAPTER 2

A Note About Built In Functions:

Most (excluding output(), and input() ect. . . ) functions do not output things on their own!! As such it is
integral that if you want an output from (most) built in functions you output the result by assigning it to a variable, and
outputting the variable, or calling the function from inside an output. Like this: output(binf()), or:

a = binf()
output(binf)

Now that we’ve cleared up this common missconception, proceed!

3



Aardvark, Release 0.8.7

4 Chapter 2. A Note About Built In Functions:



CHAPTER 3

Running Files:

To run files all you need to do is run #include file-to-run this imports all aspects of a file and runs them
directly to the terminal.

5



Aardvark, Release 0.8.7

6 Chapter 3. Running Files:



CHAPTER 4

Math And String Concatenation:

Math works as usual (Multiplication: *, Division: /, Addition: +, Subtraction: -), and ints() are defined as
number(perameter). String concatenation is done by simply putting an addition sign between strings: 'string
'+'concantonation!', 'string ' + 'concantonation!' is also valid.

7



Aardvark, Release 0.8.7

8 Chapter 4. Math And String Concatenation:



CHAPTER 5

Booleans

Booleans in Aardvark are True and False, they can both be assigned to a variable. (true and false for versions
0-0.4 and 0.8.7+)

myBoolean = True
if myBoolean == True {
output('Nice!')

}
if myBoolean == False {
output('Sad...')

}

9



Aardvark, Release 0.8.7

10 Chapter 5. Booleans



CHAPTER 6

If Statements:

If statments work like most other langages; it runs a check to see if the conditions described in the first line (the one
with the initial if) are met. If the conditions are true it will execute the given code inside the brackets. Syntax:

if condition(s) {
result

}

11



Aardvark, Release 0.8.7

12 Chapter 6. If Statements:



CHAPTER 7

Recieving User Input:

To get user input use the input() function. Syntax: input(prompt). This can be assigned to a variable like
so: myVar = input(prompt), as it is assigned to a variable you can check if (in this case) myVar is equal to
something code-block:

myVar = input('How are you? ')
if myVar == 'good' {

output('Nice!')
}

13



Aardvark, Release 0.8.7

14 Chapter 7. Recieving User Input:



CHAPTER 8

While Loops:

While statements are so useful in all the languages, and also in Aardvark! While is used to check if something is
true, and if it is true it will continue to execute the code within the while block until it is false (this can also work if
something is always true).

:: n = 0 while n < 10 {

output(n) n += 1

}

15



Aardvark, Release 0.8.7

16 Chapter 8. While Loops:



CHAPTER 9

Functions:

Functions are defined by the funct keyword. Syntax:

funct myFunction(args) {
do something

}

Function can be called by typing the function’s name with parenthese at the end (if the function has arguments include
the argument values too!) like so: myFunction(), or myFunction(args) if the function was defined with
arguments. Function arguments are seperated by commas (,). Functions defined by the user run like any other
function. To return from a function simply do return data, data can be equal to anything, a string, a number,
function, or a variable ect. . .

17



Aardvark, Release 0.8.7

18 Chapter 9. Functions:



CHAPTER 10

Directives:

All directives start with #, there are currently 3 directives, #include, #ape, and #max-memory. #include
includes the specified module. Syntax:

#include file

#max-memory sets the program’s maximum allowed memory. Syntax:

#max-memory number / For instance Sets the maximum memory to 50mb \

19



Aardvark, Release 0.8.7

20 Chapter 10. Directives:



CHAPTER 11

File Handling:

Aardvark’s file handling is very similar to Python’s, as it is very straight forward: open(file).read() will read
a file, .write(data) will write something to a file, .append(data) will apend something to the end of a file.
You can also open files into variable like so: a = open(file). You can get the ammount of space a file takes up
in kilobytes by using file_size(), Syntax: file_size(file).

21



Aardvark, Release 0.8.7

22 Chapter 11. File Handling:



CHAPTER 12

APE:

APE is Aardvark’s package manager, it stands for Aardvark Packager Extension. You can install .adk files from the
website. Go ahead, and type #ape atest, that will install atest.adk on to your computer. To run that file just
#include atest (it has to be in the same directory as the file you are running it from or in your scripts
folder). Extension/Packages can also be writen in python, these have to be in the same folder as main.py. To do this
you have to put #Aardvark.library at the beginning of the file, and don’t forget to do from Aardvark
import * this allows you to use Aardvark’s function and type creators, amoung other things: Aardvark.
function('function_name'), Aardvark.type('name'). . . To learn more about this look into main.
py and your Language folder.

23



Aardvark, Release 0.8.7

24 Chapter 12. APE:



CHAPTER 13

Visual Module:

To use the visual module first you have to include it (#include visual), after that you are good to go!
The visual module allows you to display things to the screen in a sperate window, to first initiate the window
you do: visual(title, geometry), the window geometry is formated as follows: NUMBERxNUMBER. To
make words apear to the screen use the label method: label(text, foreground, background, xcord,
ycord), for the list of colors see Tkinter’s list of colors. To recieve input use: entry(prompt, foreground,
background, xplace, yplace). All of these methods can be assigned to a variable. Last off, to make the
window visible use: show(), make sure you do this, otherwise your window will be invisible. Example:

#include visual
visual('myWindow', '800x800')
label('hello world!', 'black', 'white', 80, 150)
entry('Entry! ', 'black', 'white', 100, 100)
show()

25



Aardvark, Release 0.8.7

26 Chapter 13. Visual Module:



CHAPTER 14

Server Module

To start, lets include server using #include server, when thats done, you can start making your first Aardvark
web server. Aardvark we servers work similar to python’s flask (If you know what that is). Lets start by making a
basic website in just 3 lines of code.

#include server
render_string('Hello World!')
run_server()

Run that and there you go, your first Aardvark web server. Now, lets learn something a little harder, rendering files.
In render_string() you can add the second argument for the part of the site it will show up on. There is also
render_file() which takes the same arguments as render_string, except that the first argument is the name
of the file to render. Make a file called index.html and put some html code in it. And try this code:

#include server
render_file('index.html')
run_server()

Run the code and look at the output, your html file shows up in the browser. Now we will learn how to catch errors
like 404. You can use errorhandler() to do that. errorhandler() takes to arguments, the error code, and
the file to run if that error comes. Make a file called error.html and write an error message. Now run this code:

#include server
render_file('index.html')
errorhandler(404, 'error.html')
run_server()

And try going to a page that does not exist like /abc.html for example, your error message should come up.

27



Aardvark, Release 0.8.7

28 Chapter 14. Server Module



CHAPTER 15

Exec And Running Other Langs:

In Aardvark you are able to run Python, and C++, this can be done by using the exec() function: exec('code',
'language'). Keep in mind this is for code snippets, NOT FULL PROGRAMS. Example:

exec('print("Hello world in python!")', 'py')

29



Aardvark, Release 0.8.7

30 Chapter 15. Exec And Running Other Langs:



CHAPTER 16

Current Memory:

You can recieve the program’s current memory usage by doing currentMemUsage(). This takes no arguments.

31



Aardvark, Release 0.8.7

32 Chapter 16. Current Memory:



CHAPTER 17

Data Types:

33



Aardvark, Release 0.8.7

34 Chapter 17. Data Types:



CHAPTER 18

Tools Module:

To include the tools module in your program use: #include tools. This allows you to do things with random
numbers, and factorials. First off to use factorials just do: factorial(number). There are multiple function deal-
ing with random things, first is random(), it returns a random number between 0 and 1. Next is randomchoice(),
it chooses a random item from an iterable. Next is randint(), it return a random integer within the specified range.

35



Aardvark, Release 0.8.7

36 Chapter 18. Tools Module:



CHAPTER 19

Database Module:

To have access to databeses you first have to include the db module, #include db. There are 2 functions in
the db module: addKey(), and loadData. Lets start with addKey; db connects to Json, (it is recomended
that you have some knowlege of Json before using this module) to add a key, and value to a Json file. The syn-
tax for this is: addkey(key, value, file), if nothing is passed into file it will default to db.json in the
folder that Aardvark is kept in. The other function, loadData() returns the data of a specified Json file. Syntax:
loadData(file), if nothing is passed into the file parameter it will return the data of db.json.

37



Aardvark, Release 0.8.7

38 Chapter 19. Database Module:



CHAPTER 20

List:

List are created by using the list() function, or []. They can be assigned to variables. See list.py for more info!

39



Aardvark, Release 0.8.7

40 Chapter 20. List:



CHAPTER 21

File System Module:

To include this module use #include filesystem. This adds 1 more function to your toolbelt: newFile().
The function allows you to create a new file. Syntax: newFile(filename, text), if nothing is passed into the
text parameter it will default to a blank file.

41



Aardvark, Release 0.8.7

42 Chapter 21. File System Module:



CHAPTER 22

NLP Module:

The NLP module consists of many functions useful in Natural Language Processing. Lets start with #include nlp.
The first is clean(), it returns only the most important words in the given text. The next is GetWordInfo() it
will return the information for any given word. The following code:

#include NLP
GetWordInfo('hello')

Will return a dictionary of all the synonyms, antonyms, and defintions of the given word. The next function is
ProcessList(), this function takes 1 argument, a dictionary, and process it to remove any problems. The last
function is GetTopics, which gets the topics of a conversation, it takes 1 manditory argument, a list of strings, and
returns the main topics of the conversation.

43



Aardvark, Release 0.8.7

44 Chapter 22. NLP Module:



CHAPTER 23

Timer module

The timer module has 4 functions that can be used by doing #include timer: waitSeconds()
waitMinutes(), waitHours(), and currentTime(). All of the Wait functions take in 1 number peram-
eter, the program will wait until that ammount of time has passed until proceeding with the program. Example:

#include timer
output('Hello,\n')
waitSeconds(8)
output('World!\n')

In the code above would output ‘Hello,’, wait 8 seconds, and then output ‘World!’. The other function,
currentTime(), takes in 0 perameters, and returns the current time.

45



Aardvark, Release 0.8.7

46 Chapter 23. Timer module



CHAPTER 24

Regex Module:

See regex documentation for Python https://docs.python.org/3/library/re.html

47

https://docs.python.org/3/library/re.html


Aardvark, Release 0.8.7

48 Chapter 24. Regex Module:



CHAPTER 25

System Module:

The system module currently only has 2 functions: blockStdout() and enableStdout(), blockStdout()
blocks the stdout, and enableStdout() reenables it.

49



Aardvark, Release 0.8.7

50 Chapter 25. System Module:



CHAPTER 26

Closing:

Thats it for now! More features will be added in the future, and syntax will change so make sure to keep up to date
with the docs! Thanks!

51


	Getting Started:
	A Note About Built In Functions:
	Running Files:
	Math And String Concatenation:
	Booleans
	If Statements:
	Recieving User Input:
	While Loops:
	Functions:
	Directives:
	File Handling:
	APE:
	Visual Module:
	Server Module
	Exec And Running Other Langs:
	Current Memory:
	Data Types:
	Tools Module:
	Database Module:
	List:
	File System Module:
	NLP Module:
	Timer module
	Regex Module:
	System Module:
	Closing:

